Implementing Relevance Feedback in the Bayesian Network Retrieval Model

نویسندگان

  • Luis M. de Campos
  • Juan M. Fernández-Luna
  • Juan F. Huete
چکیده

Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval Model. The theoretical frame on which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relevance Feedback for Content-Based Image Retrieval Using Bayesian Network

Relevance feedback is a powerful query modification technique in the field of content-based image retrieval. The key issue in relevance feedback is how to effectively utilize the feedback information to improve the retrieval performance. This paper presents a relevance feedback scheme using Bayesian network model for feedback information adoption. Relevant images during previous iterations are ...

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Relevance Feedback in the Bayesian Network Retrieval Model: An Approach Based on Term Instantiation

Relevance feedback has been proven to be a very effective query modification technique that the user, by providing her/his relevance judgments to the Information Retrieval System, can use to retrieve more relevant documents. In this paper we are going to introduce a relevance feedback method for the Bayesian Network Retrieval Model, founded on propagating partial evidences in the underlying Bay...

متن کامل

Document Instantiation for Relevance Feedback in the Bayesian Network Retrieval Model

Relevance Feedback consists on formulating automatically a new query, according to the relevance judgements provided by the user after evaluating the set of retrieved documents. In this paper we introduce a new relevance feedback method for the Bayesian Network Retrieval Model. This method is based on the instantiation of the observed documents as relevant or non-relevant in the Bayesian Networ...

متن کامل

بازیابی تعاملی تصاویر طبیعت با بهره گیری از یادگیری چند نمونه ای

Content-based image retrieval (CBIR) has received considerable research interest in the recent years. The basic problem in CBIR is the semantic gap between the high-level image semantics and the low-level image features. Region-based image retrieval and learning from user interaction through relevance feedback are two main approaches to solving this problem. Recently, the research in integra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JASIST

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2003